Research on structural design of a large-span cantilever canopy stadium in Guiyang

SUN Hailin, WANG Haibo, TIAN Yu, HUO Wenying, YU Lei, YANG Yongrui, LU Ying, SHI Hong

Journal of Building Structures ›› 2023, Vol. 44 ›› Issue (09) : 51-61.

PDF(19942 KB)
PDF(19942 KB)
Journal of Building Structures ›› 2023, Vol. 44 ›› Issue (09) : 51-61. DOI: 10.14006/j.jzjgxb.2022.0873
CADG Engineering cases

Research on structural design of a large-span cantilever canopy stadium in Guiyang

  • SUN Hailin, WANG Haibo, TIAN Yu, HUO Wenying, YU Lei, YANG Yongrui, LU Ying, SHI Hong
Author information +
History +

Abstract

This paper conducted research on some key design points of a large-span cantilever canopy (the maximum cantilever length is 83.2 m) of a large complicated sports and commercial complex building, to clarify its force mechanism and structural performance. Comparisons were made in terms of architectural performance, construction conditions and material quantities, etc. The lower part of the structural system adopts a reinforced concrete frame-shear wall structure, and the cantilever canopy adopts a spatial cantilever truss and ring truss structure. The forces and deformations meet the design requirements. The seismic travelling wave effect of the overall structure was analyzed and the influence coefficient at 1 100 m/s wave speed was used as the seismic effect amplification coefficient. By means of performance-based design of the structure, the performance targets of key elements were strengthened and the elastic-plastic performance of the structure under rare earthquakes was verified. The overall stability of the canopy was investigated by performing linear elastic and double non-linear buckling analysis on the overall model. The former obtained the calculated length coefficients of the vertical plane truss bars, and the structural force state analysis was supplemented for envelope design using the direct analysis method; the latter investigated the plastic development mechanism of the structure, and the results show that the structure has a reasonable sequence of plastic development and a certain level of safety reserve. Considering the failure of important elements in the force transmission path under accidental loading, this paper adopted the method of removing elements to study the ability of the canopy to resist continuous collapse, and the results show that the canopy structure has a reliable alternate force transmission path and meets the design requirements. In combination with the actual construction method, the structure was simulated in a zoned and step-by-step construction analysis compared to the one-step forming state, and the differences in vertical displacements and maximum stresses in the main structure were slight, which proves the feasibility of the construction solution.

Key words

large span cantilever truss / scheme comparison / stability analysis / traveling wave effect / construction simulation

Cite this article

Download Citations
SUN Hailin, WANG Haibo, TIAN Yu, HUO Wenying, YU Lei, YANG Yongrui, LU Ying, SHI Hong. Research on structural design of a large-span cantilever canopy stadium in Guiyang[J]. Journal of Building Structures, 2023, 44(09): 51-61. https://doi.org/10.14006/j.jzjgxb.2022.0873

References

[1] 盛平, 张龑华,甄伟,等. 北京工人体育场结构改造设计方案及关键技术[J]. 建筑结构,2021,51(19):1-6. (SHENG Ping,ZHANG Yanhua,ZHEN Wei, et al. Structural reconstruction design schemes and key technologies of Beijing Workers Stadium[J]. Building Structure, 2021, 51(19): 1-6. (in Chinese))
[2] 郭彦林, 王昆,田广宇,等. 车辐式张拉结构体型研究与设计[J]. 建筑结构学报, 2013, 34(5): 1-10.(GUO Yanlin, WANG Kun, TIAN Guangyu, et al. Research and design of structural form of spoke structure[J]. Journal of Building Structures, 2013, 34(5): 1-10. (in Chinese))
[3] 葛家琪, 刘邦宁,王树,等. 预应力全索系整体张拉结构设计研究[J]. 建筑结构学报, 2019, 40(11): 73-80.(GE Jiaqi, LIU Bangning, WANG Shu, et al. Study on design of prestressed tensegrity cable structures[J]. Journal of Building Structures, 2019,40(11): 73-80. (in Chinese))
[4] 郭彦林, 王昆,孙文波,等. 宝安体育场结构设计关键问题研究[J]. 建筑结构学报, 2013, 34(5): 11-19.(GUO Yanlin, WANG Kun, SUN Wenbo, et al. Research on key structural design problems of the Bao'an Stadium[J]. Journal of Building Structures, 2013, 34(5): 11-19. (in Chinese))
[5] 李瑞雄, 李亚明,姜琦. 枣庄体育场索桁屋盖结构设计关键技术研究[J]. 建筑结构, 2018, 48(17): 22-27.(LI Ruixiong, LI Yaming, JIANG Qi, et al. Research on key structural design technologies of the cable-truss roof system in Zaozhuang Stadium [J].Building Structure,2018,48(17):22-27.(in Chinese))
[6] 徐晓明, 张士昌,高峰,等. 苏州奥体中心体育场钢屋盖结构设计[J]. 建筑结构, 2019, 49(23): 1-6. (XU Xiaoming, ZHANG Shichang, GAO Feng, et al. Structural design on steel roof of stadium of Suzhou Olympics Sports Center[J]. Building Structure, 2019, 49(23): 1-6. (in Chinese))
[7] 冯远, 向新岸,王立维,等.郑州奥体中心体育场钢结构设计研究[J]. 建筑结构学报, 2020, 41(5): 11-22. (FENG Yuan, XIANG Xin'an, WANG Liwei, et al. Steel structural design of Zhengzhou Olympic Center stadium[J]. Journal of Building Structures, 2020, 41(5):11-22. (in Chinese))
[8] 冯远, 向新岸,王恒,等. 大开口车辐式索承格结构构建及其受力机制和找形研究[J]. 建筑结构学报, 2019, 40 (3): 69-80. (FENG Yuan, XIANG Xin'an, WANG Heng, et al. Mechanical behavior and form-finding research on large openingspoke-wheel-type cable supported grid structure[J]. Journal of Building Structures, 2019, 40 (3): 69-80.(in Chinese))
[9] 冯远, 向新岸,王恒. 大开口车辐式索承网格结构静力性能影响因素分析[J]. 建筑结构学报, 2019, 40(3): 81-91. (FENG Yuan, XIANG Xin'an, WANG Heng. Static performance parameter analysis of large opening spoke-wheel-type cable supported grid structure[J]. Journal of Building Structures, 2019, 40(3): 81-91. (in Chinese))
[10] 张月强, 张峥,丁洁民. 内凹形轮辐式张拉结构基本体系找形与关键参数分析[J]. 建筑结构学报, 2016, 37(6): 36-45.(ZHANG Yueqiang, ZHANG Zheng, DING Jiemin. Form finding and key parameter analysis for concave wheel-spoke shaped pretension structure system[J]. Journal of Building Structures, 2016, 37(6): 36-45. (in Chinese))
[11] 建筑结构荷载规范: GB 50009—2012 [S]. 北京:中国建筑工业出版社, 2012. (Load code for building structures: GB 50009—2012[S]. Beijing: China Architecture & Building Press, 2012.(in Chinese))
[12] 杨卓.贵阳恒大足球场项目风致结构响应分析报告[R].广州:广东省建筑科学研究院集团股份有限公司风工程研究中心,2020.(YANG Zhuo.Analysis report on wind induced structure response of Guiyang Evergrande football stadium project[R].Guangzhou:Wind Engineering Research Center of Guangdong Academy of Building Research Group Co., Ltd, 2020.(in Chinese))
[13] 建筑抗震设计规范:GB 50011—2010 [S]. 2016版.北京:中国建筑工业出版社,2016. (Code for seismic design of buildings: GB 50011—2010[S]. 2016 ed.China Architecture & Building Press, 2016. (in Chinese))
[14] 高耸结构设计标准: GB 50135—2019[S]. 北京:中国计划出版社,2019. (Standard for design of highrising structures: GB 50135—2019[S]. Beijing: China Planning Press,2019. (in Chinese))
[15] 李昊, 犹珀玉,李梦姣,等. 贵州省覆冰与地理环境因子的空间相关分析[J]. 计算机科学与探索, 2017,11(增刊1): 150-158.
[16] 空间网格结构技术规程:JGJ 7—2010 [S]. 北京:中国建筑工业出版社,2010. (Technical specification for space frame structures: JGJ 7—2010 [ S]. Beijing: China Architecture & Building Press, 2010. (in Chinese))
[17] 钢结构设计标准:GB 50017—2017[S]. 北京:中国建筑工业出版, 2017. (Standard for design of steel structures GB 50017—2017 [S]. Beijing: China Architecture & Building Press, 2017. (in Chinese))
[18] 范重, 张康伟,张郁山,等.视波速确定方法与行波效应研究[J]. 工程力学, 2021, 38(6):47-61. (FAN Zhong, ZHANG Kangwei, ZHANG Yushan, et al. Study on apparent wave velocity calculation method and on travelling wave effect[J]. Engineering Mechanics, 2021, 38(6):47-61. (in Chinese))
[19] 夏绍全, 马克俭,肖建春,等. 大悬挑预应力空间结构对多点地震波输入的反应:以贵阳奥体中心体育场为例[J]. 贵州大学学报(自然科学版), 2011, 28(2):99-102. (XIA Shaoquan,MA Kejian,XIAO Jianchun, et al. Response of long cantilever prestressed spatial structures to multi-point earthquack wave input:with the case study of the Palaestra of Guiyang Olympic Center[J]. Journal of Guizhou University (Natural Sciences), 2011, 28(2):99-102. (in Chinese))
[20] 石永久, 赵博,陈志华,等. 成都东客站钢结构多点地震输入响应分析[J].沈阳建筑大学学报(自然科学版), 2014, 30(1): 1-8. (SHI Yongjiu,ZHAO Bo,CHEN Zhihua, et al. Time-history analysis of seismic response of Chengdu east railway station subjected to non-uniform ground motions [J]. Building Structure, 2014, 30(1): 1-8. (in Chinese))
[21] 谢俊乔, 刘宜丰,夏循,等. 成都天府国际机场指廊钢结构设计[J]. 建筑结构, 2020, 50(19): 43-50.(XIE Junqiao,LIU Yifeng,XIA Xun, et al. Steel structural design of airside concourses of Tianfu International Airport[J]. Building Structure, 2020, 50(19): 43-50. (in Chinese))
[22] 周定松, 肖克艰,陈志强. 成都双流国际机场T2航站楼大厅多点多维弹性地震反应分析[J]. 建筑结构, 2010, 40(9): 14-19. (ZHOU Dingsong,XIAO Kejian,CHEN Zhiqiang. Time-history analysis on the hall structure in Chengdu Shuangliu International Airport T2 Terminal Building under multi-support and multi-dimension seismic excitation[J]. Building Structure, 2010, 40(9): 14-19. (in Chinese))
[23] 束伟农, 李华峰,卜龙瑰,等. 昆明新机场航站楼多维多点抗震性能研究[J]. 建筑结构, 2009, 39(12): 68-70. (SHU Weinong,LI Huafeng,BU Longgui, et al. Multi-support and multi-dimension excitation seismic analysis on New Kunming Airport Building [J]. Building Structure, 2009, 39(12): 68-70. (in Chinese))
[24] 闫晓京, 秦凯,朱忠义,等. 中国摩商业综合体大跨屋盖结构体系分析[J]. 建筑结构, 2019, 49(18): 110-114. (YAN Xiaojing,QIN Kai,ZHU Zhongyi, et al. Analysis on large-span roof structural system of commercial complex of China Mall [J]. Building Structure, 2019, 49(18): 110-114. (in Chinese))
[25] 范重, 高嵩,朱丹,等. 雄安站站台雨棚结构行波效应影响研究[J]. 建筑结构, 2019, 49(7): 89-96. (FAN Zhong, GAO Song, ZHU Dan,et al. Study on influence of traveling wave effect of platform canopies for Xiong'an Railway Station[J]. Building Structure, 2019, 49(7): 89-96. (in Chinese))
[26] 王广军.我国境内历史地震等震线的某些特征[J]. 地震工程动态, 1982,4: 1-7. (WANG Guangjun. Some characteristics of isoseismal lines of historical earthquakes in China[J]. Earthquake Resistant Engineering, 1982,4: 1-7 (in Chinese))
[27] 建筑结构抗倒塌设计规范: CECS 392:2014[S]. 北京:中国计划出版社, 2014.(Code for anti-collapse design of building structures: CECS 392:2014[S]. Beijing: China Planning Press, 2014. (in Chinese))
PDF(19942 KB)

222

Accesses

0

Citation

Detail

Sections
Recommended

/