Experimental study on seismic behavior of square CFST column-composite beam single-side bolted rigid joint under high axial compression

DING Faxing, WEI Xinyi, PAN Zhicheng, WANG Liping, LEI Jianxiong, CHEN Jun, HU Mingwen, YANG Jian

Journal of Building Structures ›› 2023, Vol. 44 ›› Issue (07) : 105-115.

PDF(20405 KB)
PDF(20405 KB)
Journal of Building Structures ›› 2023, Vol. 44 ›› Issue (07) : 105-115. DOI: 10.14006/j.jzjgxb.2022.0015
Special topics in disaster resistance and reduction of structures

Experimental study on seismic behavior of square CFST column-composite beam single-side bolted rigid joint under high axial compression

  • DING Faxing1, WEI Xinyi1, PAN Zhicheng2,3, WANG Liping1, LEI Jianxiong1, CHEN Jun4, HU Mingwen5, YANG Jian6
Author information +
History +

Abstract

To solve the potential safety problems of the bolted joints between concrete-filled square steel tubular columns and composite beams under seismic action, in this paper, nine end-plate bolted connections and three stiffening rings rigidly connected concrete-filled steel tubular (CFST) column-composite beam joints were tested under horizontal and low-cycle reciprocating loads. The effects of tie bars, axial compression ratio, beam height, stiffeners, and connection methods on the hysteretic properties of joint specimens, such as failure mode, hysteretic energy dissipation, skeleton curve, stiffness degradation, flexural bearing capacity and ductility coefficient were also discussed. The experimental results show that under three axial compression ratios (0.2、0.6、0.8), due to the reinforcement and restraint effect of the “strong column” structure of the inner tie bars on the core area and column ends of the above types of joints, the specimens all show the bending failure of the beam end, avoiding the phenomenon of bending failure at the column end of the common test piece without tie bar when the high axial compression ratio is 0.8. The hysteresis curve of the bolt joints under the “strong column” structure of tie-bars is fuller, after adding stiffeners or increasing secition height of beams and higher “strong beam” structures. And the initial rotational stiffness, flexural bearing capacity and energy dissipation capacity are improved, avoiding the pinching and slipping of the hysteretic curve of the common bolt joint specimen, the obvious descending section of the skeleton curve, and the rapid attenuation of stiffness and bearing capacity. The bolted joint after the “strong column and strong beam” structure has the same initial rotational stiffness and flexural bearing capacity, and better seismic performance compared with the welded reinforcement joint after the “strong column” structure. The proposed joint technology of the bolted rigid joint can realize the seismic effect of welded reinforcement joints.

Key words

CFST / composite beam / bolted rigid connection / tie bar / quasi-static test / seismic behavior

Cite this article

Download Citations
DING Faxing, WEI Xinyi, PAN Zhicheng, WANG Liping, LEI Jianxiong, CHEN Jun, HU Mingwen, YANG Jian. Experimental study on seismic behavior of square CFST column-composite beam single-side bolted rigid joint under high axial compression[J]. Journal of Building Structures, 2023, 44(07): 105-115. https://doi.org/10.14006/j.jzjgxb.2022.0015

References

[1] 陈宝春, 李莉,罗霞,等. 超高强钢管混凝土研究综述[J]. 交通运输工程学报, 2020, 20(5): 1-21. (CHEN Baochun, LI Li, LUO Xia, et al. Review on ultra-high strength concrete filled steel tubes[J]. Journal of Traffic and Transportation Engineering, 2020, 20(5): 1-21. (in Chinese))
[2] 韩林海. 钢管混凝土结构理论与实践[M].北京:科学出版社, 2016. (HAN Linhai. Theory and practice of concrete-filled steel tube structure[M]. Beijing: Science Press, 2016. (in Chinese))
[3] 王静峰,王海涛,王冬花,等.钢管混凝土柱-钢梁单边高强螺栓端板连接框架的拟静力试验研究[J].土木工程学报, 2017, 50(4): 13-20. (WANG Jingfeng, WANG Haitao, WANG Donghua, et al. Experimental study on CFST column-to-steel beam frames with high-strength blind-bolted endplate connections under pseudo-static loading[J]. China Civil Engineering Journal, 2017, 50(4): 13-20. (in Chinese))
[4] 杨红, 余依瑾,康乐,等. 法兰连接钢管混凝土柱-钢梁外加强环节点受力性能研究[J]. 建筑结构学报, 2022, 43(2): 157-172. (YANG Hong, YU Yijin, KANG Le, et al. Study on mechanical behavior of flange-connected CFST column-steel beam joint with external stiffening ring plate[J]. Journal of Building Structures, 2022, 43(2): 157-172. (in Chinese))
[5] 王文达,韩林海,游经团.方钢管混凝土柱-钢梁外加强环节点滞回性能的实验研究[J].土木工程学报,2006, 39(9):17-25. (WANG Wenda, HAN Linhai, YOU Jingtuan. Experimental studies on hysteretic behaviors of steel beam to concrete filled SHS column connections with stiffening ring[J]. China Civil Engineering Journal,2006,39(9):17-25. (in Chinese))
[6] LI W, HAN L H. Seismic performance of CFST column to steel beam joints with RC slab: analysis[J]. Journal of Constructional Steel Research,2011,67(1):127-139.
[7] ENGELHARDT M, SABOL T. Seismic-resistant steel moment connections: developments since the 1994 Northridge earthquake[J].Construction Research Communication Limited,1997,1(1): 68-77.
[8] Architectural Institute of Japan.Reconnaissance report on damage to steel building structures observed from the 1995 Hyogoken-Nanhu (Hanshin/Awaji) earthquake[R].Japan: Architectural Institute of Japan,1995.
[9] 袁定强,苏旭耀,郭皓,等.1999年台湾集集7.6级地震对大陆地区影响烈度调查及研究[J].中国地震,2008, 24(2):116-125. (YUAN Dingqiang, SU Xuyao, GUO Hao, et al. The survey and research on influencing intensity of 1999 Taiwan Chi-Chi Ms7.6 Earthquake in the Chinese continent region[J]. Earthquake Research in China, 2008, 24(2): 116-125. (in Chinese))
[10] HAJJAR J F, LEON R T, GUSTAFSON M A, et al. Seismic response of composite moment-resisting connections: II: behavior[J]. Journal of Structural Engineering, 1998, 124(8): 877-885.
[11] 李国强, 段炼,陆烨,等. H型钢梁与矩形钢管柱外伸式端板单向螺栓连接节点承载力试验与理论研究[J]. 建筑结构学报, 2015, 36(9): 91-100. (LI Guoqiang, DUAN Lian, LU Ye, et al. Experimental and theoretical study of bearing capacity for extended endplate connections between rectangular tubular columns and H-shaped beams with single direction bolts[J]. Journal of Building Structures, 2015, 36(9): 91-100. (in Chinese))
[12] 王静峰, 江姗,郭磊,等. 单边高强螺栓连接方套方中空夹层钢管混凝土柱组合节点抗震性能试验研[J]. 建筑结构学报, 2021, 42(1): 93-102. (WANG Jingfeng, JIANG Shan, GUO Lei, et al. Experimental study on seismic performance of concrete-filled double steel tubular column composite connections with high strength blind bolts[J]. Journal of Building Structures, 2021, 42(1): 93-102. (in Chinese))
[13] 何益斌, 黄频,郭健,等. 方钢管钢骨混凝土柱与钢梁端板螺栓连接节点抗震性能试验研究[J]. 建筑结构学报, 2012, 33(7): 116-125. (HE Yibin, HUANG Pin, GUO Jian, et al. Experimental study on seismic behavior of steel-reinforced concrete square column and steel beam joint with bolted end-plate[J]. Journal of Building Structures, 2012, 33(7): 116-125. (in Chinese))
[14] 宗周红, 林于东,陈慧文,等. 方钢管混凝土柱与钢梁连接节点的拟静力试验研究[J]. 建筑结构学报, 2005, 26(1): 77-84. (ZONG Zhouhong, LIN Yudong, CHEN Huiwen, et al. Quasi-static test on concrete-filled square steel tube column to steel beam connections[J]. Journal of Building Structures, 2005, 26(1): 77-84. (in Chinese))
[15] 丁发兴, 刘怡岑,吕飞,等. 拉筋接触方式对高轴压比钢管混凝土柱抗震性能影响试验研究[J]. 建筑结构学报, 2021, 42(9): 62-72. (DING Faxing, LIU Yicen, LÜ Fei, et al. Experimental study on influence of contact mode between stirrup and steel tube on seismic performance of stirrup-confined concrete-filled steel tube columns under high axial compression ratio[J]. Journal of Building Structures, 2021, 42(9): 62-72. (in Chinese))
[16] DING F X, PAN Z C, LIU P, et al. Influence of stiffeners on the performance of blind-bolt end-plate connections to CFST columns[J]. Steel and Composite Structures, 2020,36(4):447-462.
[17] DING F X, LUO L, WANG L P, et al. Pseudo-static tests of terminal stirrup-confined concrete-filled rectangular steel tubular columns[J]. Journal of Constructional Steel Research, 2018, 144: 135-152.
[18] DING F X, LU D R, BAI Y, et al. Comparative study of square stirrup-confined concrete-filled steel tubular stub columns under axial loading[J]. Thin-Walled Structures, 2016, 98: 443-453.
[19] 普通混凝土力学性能试验方法:GB/T 50081—2002[S].北京:中国建筑工业出版社,2002. (Standard for method of mechanical properties on ordinary concrete: GB/T 50081—2002[S]. Beijing: China Architecture & Building Press, 2002. (in Chinese))
[20] 金属材料 拉伸试验:第1部分:室温试验方法:GB/T 228.1—2021[S]. 北京:中国标准出版社,2021. (Metallic materials:tensile testing:part 1:method of test at room temperature:GB/T 228.1—2021[S]. Beijing:Standards Press of China,2021. (in Chinese))
[21] 建筑抗震试验规程:JGJ/T 101—2015[S]. 北京:中国建筑工业出版社, 2015. (Specification for seismic test of buildings: JGJ/T 101—2015[S]. Beijing: China Architecture & Building Press, 2015. (in Chinese)
[22] ATC. Guidelines for cyclic seismic testing of components of steel structures: ATC-24[S]. Redwood City, CA: Applied Technology Council, 1992.
[23] Eurocode 3: design of steel structures:part 1-8: design of joints:ENV 1993-1-8[S]. Brussels: CEN, 2005.
[24] Eurocode 4: design of composite steel and concrete structures:part 1-1: general rules and rules for buildings: DS/EN 1994-1-1: 2007[S]. Brussels: European Committee for Standardization, 2007.
[25] 王一焕. 锚固单向螺栓力学性能及其在抗弯框架中的应用研究[D].广州:华南理工大学,2020:77-78. (WANG Yihuan. Study on mechanical behaviors of anchored blind bolt and its application in moment-resisting frame[D]. Guangzhou: South China University of Technology, 2020:77-78. (in Chinese))
[26] 李威. 圆钢管混凝土柱-钢梁外环板式框架节点抗震性能研究[D]. 北京:清华大学, 2011:51-54. (LI Wei. Study on the seismic performance of circular concrete-filled steel tubular column to steel beam joint with external diaphragm[D]. Beijing: Tsinghua University, 2011:51-54. (in Chinese))
PDF(20405 KB)

199

Accesses

0

Citation

Detail

Sections
Recommended

/