多级地震作用下LRB隔震多层结构抗震性能分析

王昱翔, 叶昆

建筑结构学报 ›› 2023, Vol. 44 ›› Issue (11) : 1-14.

PDF(1692 KB)
PDF(1692 KB)
建筑结构学报 ›› 2023, Vol. 44 ›› Issue (11) : 1-14. DOI: 10.14006/j.jzjgxb.2022.0583
结构抗灾及减灾专题

多级地震作用下LRB隔震多层结构抗震性能分析

  • 王昱翔, 叶昆
作者信息 +

Seismic performance analysis of LRB base-isolated multi-story structures subjected to multi-level earthquakes

  • WANG Yuxiang, YE Kun
Author information +
文章历史 +

摘要

随着GB 18036—2015《中国地震动参数区划图》中引入了极罕遇地震作用、GB/T 51408—2021《建筑隔震设计标准》中提出了基于直接设计法的隔震结构设计理念以及《基于保持建筑正常使用功能的抗震技术导则(报批稿)》中对保证结构正常使用功能提出了相应指标,有必要对基于直接设计法的基础隔震结构在设防、罕遇和极罕遇地震等多级地震作用下能否保证安全性及正常使用功能展开研究。将基础隔震结构简化为集中质量的多自由度体系并采用直接设计法完成结构设计,采用非线性时程分析方法研究上部结构自振周期、水平侧向刚度竖向分布及隔震系统力学性能参数对基础隔震结构在多级地震作用下安全性和正常使用功能的影响规律。研究结果表明:上部结构自振周期和隔震系统屈重比的变化对于基础隔震结构在设防和罕遇地震作用下的安全性及正常使用功能有较大的影响;极罕遇地震作用下基于直接设计法的基础隔震结构基本能够满足保证结构安全性的要求,但是同等条件下增大上部结构自振周期、减小隔震系统周期和屈重比均会对保证结构安全性带来不利影响;在隔震层与基坑挡墙发生碰撞的情况下基础隔震结构将难以保证安全性和正常使用功能,因此为有效降低基础隔震结构在极罕遇地震作用下与周边基坑挡墙发生碰撞,同时也避免过大的隔离空间,建议隔离缝的宽度取为罕遇地震作用下隔震层水平变形值的两倍。

Abstract

With the introduction of extremely rare earthquakes into GB 10836—2015“Seismic ground motion parameters zonation map of China”, the direct design method proposed in the GB/T 51408—2021 “Standard for seismic isolation design of building”, and some performance indices related to functionality of structures proposed in “Guideline for seismic technology to maintain functionality of buildings in earthquakes (draft for approval)”, it is necessary to investigate whether base-isolated structures based on the direct design method could guarantee the safety and function requirements under multi-level earthquakes (i.e., design based earthquake, maximum considered earthquake and extremely rare earthquake). In this study, a direct design-compliant base-isolated structure was modelled as a multiple degree of freedom of system with lumped masses. Through parametric studies, the effects of the natural vibration period of the superstructure, the distribution of lateral stiffness and the parameters of the isolation system on the safety and function of base-isolated structures were studied. The results show that the natural vibration period of the superstructure and the yield-weight ratio of the isolation system have a great influence on the safety and function of base-isolated structures. Under the extremely rare earthquake, the base-isolated structure can basically ensure safety. However, uniform lateral stiffness distribution, long natural period of superstructure, short period and small yield-weight ratio of isolation system will be unfavorable to structural safety. Considering the pounding of the structure with surrounding retaining wall, the safety and normal use function of the base-isolated structure will be difficult to ensure. Therefore, it is recommended that the width of the seismic gap should be twice as much as the horizontal deformation of the isolation system subjected to the maximum considered earthquake.

关键词

基础隔震结构 / 铅芯橡胶隔震支座 / 直接设计法 / 多级地震作用 / 抗震性能 / 碰撞

Key words

base-isolated structure / lead rubber bearing / direct design method / multi-level seismic action / seismic performance / pounding

引用本文

导出引用
王昱翔, 叶昆. 多级地震作用下LRB隔震多层结构抗震性能分析[J]. 建筑结构学报, 2023, 44(11): 1-14. https://doi.org/10.14006/j.jzjgxb.2022.0583
WANG Yuxiang, YE Kun. Seismic performance analysis of LRB base-isolated multi-story structures subjected to multi-level earthquakes[J]. Journal of Building Structures, 2023, 44(11): 1-14. https://doi.org/10.14006/j.jzjgxb.2022.0583

参考文献

[1] 中国地震动参数区划图:GB 18036—2015[S]. 北京:中国标准出版社,2015.(Seismic ground motion parameters zonation map of China:GB 18036—2015[S]. Beijing: Standards Press of China,2015. (in Chinese))
[2] 朱宏平, 谭平,叶昆. 极罕遇地震作用下铅芯橡胶隔震支座基础隔震结构抗震性能研究[J]. 建筑结构学报, 2019, 40(10): 122-131. (ZHU Hongping, TAN Ping, YE Kun. Investigation of seismic performance of LRB base-isolated structures subjected to extremely rare earthquakes[J]. Journal of Building Structures, 2019, 40(10): 122-131. (in Chinese))
[3] 武沛松, 王建,欧进萍. 隔震建筑抗极罕遇地震能力与主要破坏模式分析[J]. 防灾减灾工程学报, 2020, 40(3): 317-325. (WU Peisong,WANG Jian,OU Jinping. Research and design of main failure modes of seismically isolated structures subjected to very-rare earthquakes [J]. Journal of Disaster Prevention and Mitigation Engineering, 2020, 40(3): 317-325. (in Chinese))
[4] BAO Y, BECKER T C. Inelastic response of base-isolated structures subjected to impact [J]. Engineering Structures, 2018, 171: 86-93.
[5] DU H K, WANG Y D, HAN M, et al. Experimental seismic performance of a base-isolated building with displacement limiters [J]. Engineering Structures, 2021, 244:112811.
[6] 黄潇, 胡志祥,刘运林. 极罕遇地震作用下LRB基础隔震结构地震响应特性[J]. 防灾减灾工程学报, 2022, 42(3): 436-444. (HUANG Xiao,HU Zhixiang,LIU Yunlin. Seismic response behavior of LRB base-isolated structure under extreme rare earthquakes [J]. Journal of Disaster Prevention and Mitigation Engineering, 2022, 42(3): 436-444. (in Chinese))
[7] 建筑抗震设计规范:GB 50011—2010[S]. 2016版.北京:中国建筑工业出版社, 2016. (Code for seismic design of buildings: GB 50011—2010[S]. 2016 ed.Beijing: China Architecture & Building Press, 2016. (in Chinese))
[8] 建筑隔震设计标准: GB/T 51408—2021[S]. 北京:中国计划出版社, 2021. (Standard for seismic isolation design of building: GB/T 51408—2021[S]. Beijing: China Planning Press, 2021. (in Chinese))
[9] 叶昆, 胡广杰. 基于直接设计法的基础隔震结构抗震性能评估[J]. 建筑结构学报, 2023, 44(4): 276-285. (YE Kun,HU Guangjie. Seismic performance evaluation of base isolated structures based on direct design method [J]. Journal of Building Structures,2023,44(4):276-285. (in Chinese))
[10] CHIMAMPHANT S, KASAI K. Comparative response and performance of base-isolated and fixed-base structures [J]. Earthquake Engineering & Structural Dynamics, 2016, 45(1): 5-27.
[11] 刘文光, 何文福,霍达,等. 隔震结构设计加速度反应谱的取值研究[J]. 振动与冲击, 2010, 29(4): 181-187. (LIU Wenguang, HE Wenfu, HUO Da, et al. Study on the value of design acceleration response spectrum of isolated structures [J]. Journal of Vibration and Shock, 2010, 29(4): 181-187. (in Chinese))
[12] ATC.Quantification of building seismic performance factors: ATC-63 [M]. Redwood City: Applied Technology Council, 2008.
[13] SeismoSoft.SeismoMatch user manuals [DB/OL].Version 2.0.Pavia, Italy:Seismosoft Company,2016.[2022-07-11]. http://www.seismosoft.com/SeismoMatch-documentation.
[14] SHODJA A H, ROFOOEI F R. Using a lumped mass, nonuniform stiffness beam model to obtain the interstory drift spectra [J]. Journal of Structural Engineering, 2014, 140(5): 155-164.
[15] RYAN K L, POLANCO J. Problems with rayleigh damping in base-isolated buildings [J]. Journal of Structural Engineering, 2008, 134(11): 1780-1784.
[16] GUPTA A K, JAW J W. Response spectrum method for nonclassically damped systems [J]. Nuclear Engineering and Design, 1986, 91(2): 161-169.
[17] 俞瑞芳, 周锡元. 具有过阻尼特性的非比例阻尼线性系统的复振型分解法[J]. 建筑结构学报, 2006, 27(1): 50-59. (YU Ruifang, ZHOU Xiyuan. Complex mode superposition method for non-classically damped linear system with over-critical damping peculiarity [J]. Journal of Building Structures, 2006, 27(1): 50-59. (in Chinese))
[18] 薛彦涛, 巫振弘. 隔震结构振型分解反应谱计算方法研究[J]. 建筑结构学报, 2015, 36(4): 119-125. (XUE Yantao, WU Zhenhong. Study on mode-superposition response spectrum method applied in isolated structures [J]. Journal of Building Structures, 2015, 36(4): 119-125. (in Chinese))
[19] 陈华霆, 谭平. 非线性基础隔震结构复振型反应谱设计方法[J]. 建筑结构学报, 2022, 43(2):1-12. (CHEN Huating, TAN Ping. Complex modal response spectrum approach for design of nonlinear base-isolated structures [J]. Journal of Building Structures, 2022, 43(2):1-12. (in Chinese))
[20] 翟长海, 谢礼立. 钢筋混凝土框架结构超强研究[J]. 建筑结构学报, 2007, 28(1): 101-106. (ZHAI Changhai, XIE Lili. Study on overstrength of RC frame structures [J]. Journal of Building Structures, 2007, 28(1): 101-106. (in Chinese))
[21] 日本建筑学会. 隔震结构设计[M].刘文光,译. 北京:地震出版社, 2006. (Architectural Institute of Japan. Recommendation for design of base isolated building [M]. Translated by LIU Wenguang. Beijing: Seismological Press, 2006. (in Chinese))
[22] WEN Y K. Method for random vibration of hysteretic systems [J]. Journal of the Engineering Mechanics Division, 1976, 102(2): 249-263.
[23] 叶昆, 李黎. 改进的Kelvin碰撞分析模型[J]. 工程力学, 2009, 26(增刊2): 245-248. (YE Kun, LI Li. Modified Kelvin pounding analytical model [J]. Engineering Mechanics, 2009, 26 (Suppl.2): 245-248. (in Chinese))
[24] 黄潇, 刘运林,胡志祥. LRB基础隔震结构在极罕遇地震作用下的抗震性能研究[J]. 地震工程与工程振动, 2021, 41(4): 233-243. (HUANG Xiao,LIU Yunlin,HU Zhixiang. Seismic behavior of LRB base-isolated structure under extreme rare earthquakes [J]. Earthquake Engineering and Engineering Dynamics, 2021, 41(4): 233-243. (in Chinese))
[25] JANGID R S. Stochastic response of building frames isolated by lead-rubber bearings [J]. Structural Control & Health Monitoring, 2010, 17(1): 1-22.
[26] QU Z, KISHIKI S, NAKAZAWA T. Influence of isolation gap size on the collapse performance of seismically base-isolated buildings [J]. Earthquake Spectra, 2013, 29(4): 1477-1494.

基金

国家自然科学基金项目(52078234)。
PDF(1692 KB)

142

Accesses

0

Citation

Detail

段落导航
相关文章

/