钢管叠层黏弹性阻尼器是由钢管和叠层黏弹性体等组成。为建立钢管叠层黏弹性阻尼器设计方法,将钢管叠层黏弹性阻尼器力学模型等效为叠层黏弹性体的线性模型和钢管的双线性模型叠加,通过虚功原理推导出钢管叠层黏弹性阻尼器初始刚度计算公式;由von Mises屈服准则推导出钢管叠层黏弹性阻尼器屈服承载力计算公式,在此基础上推导出屈服位移和极限承载力计算公式,给出钢管叠层黏弹性阻尼器的设计流程。采用有限元分析软件对4个钢管叠层黏弹性阻尼器进行模拟分析,并与理论计算结果对比,验证了理论计算公式与设计流程的合理性。研究结果表明:钢管叠层黏弹性阻尼器等效计算模型合理可靠;初始刚度、屈服力、屈服位移和极限承载力的理论公式计算结果与有限元模拟结果吻合较好,且理论公式计算结果偏于安全;给出的设计流程简单可行,可用于钢管叠层黏弹性阻尼器的设计与加工制造。
Abstract
The laminated viscoelastic body filled steel tube damper (LVBSTD) is composed of steel tube and laminated viscoelastic body. In order to establish the design method of the laminated viscoelastic body filled steel tube damper, the mechanical model of the LVBSTD was equivalent to the superposition of linear model of the laminated viscoelastic body and the bilinear model of the steel tube, the initial stiffness calculation formula of the LVBSTD was deduced based on the principle of virtual work, and the yield bearing capacity calculation formula of the LVBSTD was deduced based on the von Mises yield criterion. On this basis, the calculation formulae of yield displacement and ultimate bearing capacity were derived, and the design process of LVBSTD was given. The finite element software was used to simulate and analyze four LVBSTDs, and compared with the theoretical calculation results to verify the rationality of the theoretical calculation formula and design process. The results show that the equivalent calculation model of the LVBSTD is reasonable and reliable, the theoretical calculation results of the initial stiffness, yield force, yield displacement and ultimate bearing capacity are in good agreement with the finite element simulation results, and the theoretical calculation results are on the safe side. The given design process is simple and feasible, and can be used for the design and manufacture of LVBSTD.
关键词
钢管叠层黏弹性阻尼器 /
力学参数 /
理论公式 /
有限元分析 /
设计方法
{{custom_keyword}} /
Key words
LVBSTD /
mechanical parameter /
theoretical formula /
finite element analysis /
design method
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 周云,商城豪,张超.消能减震技术研究与应用进展[J].建筑结构,2019,49(19):33-48.(ZHOU Yun, SHANG Chenghao, ZHANG Chao. Progress in research and application of energy-dissipated technology [J].Building Structure,2019,49(19):33-48.(in Chinese))
[2] 薛彦涛,程小燕.建筑消能减震加固技术规程介绍[J].工程抗震与加固改造,2020,42(6):30-40.(XUE Yantao, CHENG Xiaoyan. Introduction of technical specification for seismic energy dissipation of strengthening structure [J]. Earthquake Resistant Engineering and Retrofitting, 2020,42(6):30-40. (in Chinese))
[3] QU Zhe , ZHU Baijie , CAO Yuteng, et al. Rapid report of seismic damage to buildings in the 2022 M 6.8 Luding earthquake,China[J/OL]. Earthquake Research Advances.[2022-12-09].https://doi:org/10.1016/j.eqrea.2022.100180.
[4] ABEBE D Y, KIM J W, GWAK G, et al. Low-cycled hysteresis characteristics of circular hollow steel damper subjected to inelastic behavior[J]. International Journal of Steel Structures, 2019, 19(1): 157-167.
[5] PARK H Y, KIM J, KUWHARA S. Cyclic behavior of shear-type hysteretic dampers with different cross-sectional shapes[J]. Journal of Constructional Steel Research, 2021, 187: 106964.
[6] 周云,李家乐,邓雪松,张超. 钢管黏弹性复合阻尼器性能分析[J].建筑结构学报,2020,41(增刊2):96-103.(ZHOU Yun, LI Jiale, DENG Xuesong, ZHANG Chao. Performance analysis of composite viscoelastic steel tube damper. [J]. Journal of Building Structures,2020,41(Suppl.2):96-103. (in Chinese))
[7] 周云,钱洪涛,褚洪民,等.新型防屈曲耗能支撑设计原理与性能研究[J].土木工程学报,2009,42(4):64-71.(ZHOU Yun, QIAN Hongtao, CHU Hongmin, et al. Study on design principle and performance of new type buckling-restrained braces [J]. China Civil Engineering Journal,2009,42(4): 64-71.(in Chinese))
[8] 邓雪松,李家乐,周云,张超. 钢管叠层黏弹性阻尼器性能分析研究[J].土木工程学报,2020,53(增刊2):129-136.(DENG Xuesong, LI Jiale, ZHOU Yun, ZHANG Chao. Performance analysis of laminated viscoelastic body filled hyperbolic type steel tube damper [J]. China Civil Engineering Journal, 2020, 53(Suppl.2):129-136. (in Chinese))
[9] 建筑消能减震加固技术规程:T/CECS 547—2018[S].北京:中国建筑工业出版社,2019.(Technical specification for seismic energy dissipation of strengthening structure:T/CECS 547—2018[S].Beijing:China Architecture & Building Press,2019. (in Chinese))
[10] ZHOU Yun, LI Jiale, SHI Fei,et al. Theoretical, experimental and numerical studies on a novel laminated viscoelastomer-filled steel tube damper[J]. Structures, 2022, 45:1434-1451.
[11] CHARALAMPAKIS A E, KOUMOUSIS V K. On the response and dissipated energy of Bouc-Wen hysteretic model[J]. Journal of Sound and Vibration, 2008, 309(3):887-895.
[12] 苏经宇,曾德民,田杰. 隔震建筑概论[M]. 北京:冶金工业出版社,2012: 38-39.(SU Jingyu, ZENG Demin, TIAN Jie. An introduction to seismic isolation[M].Beijing: Metallurgical Industry Press, 2012: 38-39. (in Chinese))
[13] 龙驭球,包世华.结构力学教程[M].北京:高等教育出版社, 2002: 138-139.(LONG Quqiu, BAO Shihua. Structural mechanics course [M]. Beijing: Higher Education Press, 2002: 138-139. (in Chinese))
[14] 房晓俊.功能自恢复连梁抗震性能研究[D].广州:广州大学,2018: 71-72.(FANG Xiaojun. Study on seismic performance of self-resilient coupling beam [D]. Guangzhou: Guangzhou University,2018: 71-72. (in Chinese))
[15] 孙训方,方孝淑,关来泰. 材料力学[M]. 北京:高等教育出版社, 2008: 153-155.(SUN Xunfang, FANG Xiaoshu, GUAN Laitai. Material mechanics[M]. Beijing: Higher Education Press, 2008: 153-155. (in Chinese))
[16] 李家乐. 钢管叠层黏弹性阻尼器性能研究与分析[D].广州:广州大学,2021: 37-46. (LI Jiale. Study and analysis on performance of laminated viscoelastic body steel tube damper [D]. Guangzhou: Guangzhou University, 2021: 37-46. (in Chinese))
[17] 消能减震技术规程:GJ 297—2013[S]. 北京:中国建筑工业出版社,2013.(Technical regulations for energy dissipation and shock absorption:JGJ 297—2013[S]. Beijing:China Architecture & Building Press,2013. (in Chinese))
[18] ABAQUS. Analysis user’s manual [M]. Version 6.9.USA: ABAQUS, Inc, 2009: 10-15.
[19] 邓智.新型钢管铅阻尼器抗震性能研究[D].广州:广州大学,2018: 32-35.(DENG Zhi. Study on seismic behavior of a new type of steel tube lead damper [D]. Guangzhou: Guangzhou University, 2018: 32-35. (in Chinese))
[20] 张少实,庄茁.复合材料与黏弹性力学[M].北京:机械工业出版社,2011: 21-24.(ZHANG Shaoshi, ZHUANG Zuo. Composite and viscoelastic mechanics [M]. Beijing: China Machine Press,2011: 21-24. (in Chinese))
[21] GRACIA L A,LIARTE E,PELEGAY J L,CALVO B. Finite element simulation of the hysteretic behavior of an industrial rubber: application to design of rubber components[J].Finite Element in Analysis and Design,2010,46(4):357-368.
[22] 建筑消能阻尼器:JG/T 209—2012[S].北京:中国标准出版社,2012.(Dampers for vibration energy dissipation of buildings:JG/T 209—2012[S]. Beijing: Standards Press of China, 2012. (in Chinese))
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
国家重点研发计划重点专项(2017YFC0703608)。
{{custom_fund}}